



## **GLAST Large Area Telescope:**

**AntiCoincidence Detector (ACD) Electrical Subsystem Review** 



## **ACD Electrical Subsystem - Overview**

- 194 Independent electrical channels
- Six primary and six secondary Front-End Electronics (FREE) circuit cards
- One High Voltage Bias Supply (HVBS) per FREE circuit card. Request to change to two HVBS
- Up to 18 Photomultiplier Tube (PMTs) per FREE circuit card
- One resistor network per PMT



## **ACD Electrical Subsystem - Block diagram**





#### **ACD Electrical Subsystem – Component Status**

| Components | Function                                                                                                                                  | Status                                                                                                              |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| HVBS       | Requires +28 V supply; Outputs 0 V to 1500 V                                                                                              | Designed and ready for fabrication; Awaiting electronics packaging design completion                                |
| GAFE       | Receives PMT signal output; Generates VETO signals Track and Holds PMT signal pulse height                                                | 1 <sup>st</sup> generation in testing;<br>2 <sup>nd</sup> generation at the foundry                                 |
| GARC       | Processes all commands from ACD Electronics Module (AEM) Transmits all ACD data to AEM Provides commands and control to the GAFE and HVBS | 1 <sup>st</sup> generation design<br>completely emulated in an<br>FPGA<br>1 <sup>st</sup> generation at the foundry |



## **GARC** Development





**GARC** Layout





GARC test board

Held design review at GSFC in July '02 – no serious issues

First generation is due August '02.

FPGA implementation was tested.

FREE FPGA emulator board is successfully communicating with the AEM at SLAC and GSFC



#### **GAFE Development**



Preliminary test set-up for ACD firstgeneration analog ASIC (GAFE)



VETO output from a 1 MIP signal input to the GAFE.

Held design review at GSFC in July '02 – no serious issues

First generation: VETO and noise measurements of the analog section meet specifications. Some problems in the digital section and in the low-gain PHA linearity (secondary function)

Second generation is due in August '02.



## **High Voltage Bias Supplies**





#### **HVBS** Interfaces

#### **HVBS INTERFACES**





## **Electrical Subsystem – Schedule**

| Components                                                | Completion<br>Date |  |
|-----------------------------------------------------------|--------------------|--|
| HVBS                                                      |                    |  |
| <ul> <li>Development Unit<br/>Testing</li> </ul>          | 8/26/02            |  |
| <ul> <li>Engineering Unit testing</li> </ul>              | 1/21/03            |  |
| <ul> <li>Flight Unit ready for I&amp;T</li> </ul>         | 7/14/03            |  |
| GAFE                                                      |                    |  |
| <ul> <li>1st Generation fabrication</li> </ul>            | 10/26/01           |  |
| <ul> <li>2<sup>nd</sup> Generation fabrication</li> </ul> | 5/13/02            |  |
| <ul> <li>3<sup>rd</sup> Generation fabrication</li> </ul> | 9/23/02            |  |
| <ul> <li>Flight unit fabrication</li> </ul>               | 3/03/03            |  |
| GARC                                                      |                    |  |
| <ul> <li>1st Generation fabrication</li> </ul>            | 5/13/02            |  |
| <ul> <li>2<sup>nd</sup> generation fabrication</li> </ul> | 9/23/02            |  |
| Flight unit fabrication                                   | 3/03/03            |  |

| Components                                         | Completion<br>Date |
|----------------------------------------------------|--------------------|
| Resistor Network                                   |                    |
| <ul> <li>Engineering units testing</li> </ul>      | 7/08/02            |
| <ul> <li>Flight units ready for I&amp;T</li> </ul> | 7/30/03            |
| PMT subassembly                                    |                    |
| <ul> <li>Engineering unit testing</li> </ul>       | 8/12/02            |
| <ul> <li>Flight units ready for I&amp;T</li> </ul> | 10/09/03           |
| FREE Circuit Card                                  |                    |
| <ul> <li>Development Unit<br/>Testing</li> </ul>   | 11/06/02           |
| <ul> <li>Engineering Unit testing</li> </ul>       | 4/24/03            |
| <ul> <li>Flight Unit ready for I&amp;T</li> </ul>  | 12/01/03           |
| Float                                              | 15 weeks           |



End of Presentation



## **ASIC Design Review - GARC**

| Issues/recommendations                                                                                               | Status                                                           |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Power trace width might not meet process specs                                                                       | G. Haller checked with Agilent and it is OK.                     |
| State machine design could be susceptible to SEU. Encode using Onehot or Triple Modular Redundancy (TMR)             | Current design is acceptable because the SEU rate is negligible. |
| LVDS drivers are more sensitive to latch-<br>up because of the higher current.<br>Radiation test should be performed | All ASICs will undergo radiation testing                         |



# **ASIC Design Review - GAFE**

| Issues/ Recommendations                                                           | Status                                                                                                |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Resistors are constructed in N-wells. Use poly resistors for better performance.  | Being investigated (need more ASIC area)                                                              |
| High-value resistors that are used for charge splitting should be reduced         | Being investigated                                                                                    |
| Investigate the system level noise                                                | Current noise spec is 5x less than 0.1 MIP threshold (400 μV). Measured shaping amp output is 1.3 mV. |
| Pulse height analysis accuracy will vary with temperature, signal level and power | Thermal cycling. Measured 6% to 6.5% variation of gain over temperature range.                        |